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CONSIDERATIONS ON ERRONEOUS FLOW EQUATIONS IN
CYLINDRICAL AND SPHERICAL COORDINATES

INTRODUCTION

This is the nineteenth Quarterly Progress Report on Project
NASr-7. The title of this project is '"Shock, Flow and Radiation from the
Hypervelocity Impact of Microparticles'". The analytical and experimental
phases of this project are concerned with the phenomena that occur with the
hypervelocity impact of microparticles on a massive target, which may be
solid or layered. The overall objective is to obtaimn a sufficiently funda-
mental understanding of the physical mechanisms in the hypervelocity impact
of a microparticle so that the momentum and the energy transferred from the
particle to the target may be ascertained, and possibly, the density of the
incident microparticles may be estimated.

The two incorrect Progress Reports, Nos. 17 and 18, were forwarded
with comments that ignore the basic errors in them. This was considered acr
ceptable provided the distribution was restricted and the errors were discussed
in the next report. It is most embarrassing to have these incorrect reports
floating around without comments that correctly evaluate them. As it develops,
some dependence may be placed on the curves in these reports. With some re-
writing of the reports, the curves could be used to illustrate the problem of
an infinitely long cylinder which is incident at hypervelocity on a semi-
infinite slab. The criticisms of the thesis which is Progress Reports Nos. 17
and 18 is equally valid as a criticism of the thesis which was forwarded as
Progress Report No. 13.

The Progress Reports that are mentioned above are in error when
reference is made to the impact of a sphere. The reports are almost, but not

quite correct, provided the nomenclature is changed to claim a solution for



the hypervelocity impact of an infinitely long, aluminum cylinder on a semi-
infinite slab of aluminum. The qualitative features of the impact are correct
but the quantitative values are in error. This is attributable to the omission
of one term from each of the two momentum equations. One momentum equation is
for the radial component of the momentum and the ather one is for the transverse
component of the momentum.

In the following report, the errors in Progress Reports 17 and 18 are
always cited. The equations in Progress Report 13 have the same basic errors
and some additional errors from carelessness with the transcription, but no
cite them would be confusing. The following report starts with a consideration
of the errors in the flow equations for the conservation of mass, momentum and
energy. In each case, the 'conservative' equations in the report are converted
to the component form of the flow equations that are given by Rae3. A cross-
check is established when the vector form of the equations of flow by R. D.
Richtmyer are converted to Rae's form of the equations. These considerations
are confined to cylindrical coordinates.,

After consideration of each of the conservation equations, the component
forms of the equations are essembled in one section for future reference, The
equations are given in spherical coordinates but are not derived. The reduction
from the '"conservative' to the component form belongs in the revised thesis.

The initial boundary conditions are considered and it is shown that those in

the thesis are for an infinitely long cylinder. The ''conservative' form of the
equations for computer calculations are discussed and speculations are made on
the intrinsic value of the solutions that were forwarded in Progress Reports 13,
17 and 18. The evaluation must be designated as speculative until the actual
solutions are obtained because of the available information. In this connection,
it may be mentioned that Bjork et al7 employed the calculated results from the
oblique, hypervelocity impact of an infinitely long cylinder to estimate the

effect from the impact of a sphere.



DEFINITION OF UNITS OF ENERGY
The criticisms and the corrections are given with page references
to the unaccepted Ph.D. thesis which is Progress Report No. 17. The first

equation for reference is equation 2.3 on page 10

P %% = -V.(pw) (1)

In this equation, the term € is correctly defined as '"the total energy per
unit mass". The practical units are ergs per gram. This equation is correct
but the statement is not the most useful for further calculations. It will
be converted to a more common form below. The second equation for reference

is equation 2.4 on page 10

p=rp (p,e) (2)

This equation is correct when e is the total internal energy per unit mass.
Observe the difference in the units in these two equations. The preceding
equations and all other equations up to page 10 in the report are correct.
Considerable routine calculation is required to show that Equation 1 is
correct. This calculation will be given below. The proof of this relation
is straightforward but is very long and is placed in Appendix I.
CONSERVATION OF MASS

The first erroneous equation, as presented in the report, is equation

2.5 on page 12. This equation states

g = _ a(rpw) _ 3(pw) (3)
e rar r3d



The preceding equation is the equivalent of the vector equation for the
conservation of mass in cylindrical coordinates that is given in equation

a in Appendix A. The proof that the preceding equation is equivalent to

the vector equation from Richtmyer and to the components equation from Rae is
given in Appendix B. In terms of the component equation, Equation 3 is

found in the appendix to have the form

2, 2 4 20 4 u .
ot ar rad [ar rae ] 0 (4)

This equation is correct for cylindrical coordinates. For spherical
coordinates with no flow in the direction of r sin6 Ap, the equation be-
comes

W 4 B0 4 R0y A, r+;cote]

at  3r  r3b 3r T3 (5)

By a comparison of Equations 4 and 5, the equation in spherical coordinates

has the added terms
p[3+3cot e]
r T

CONSERVATION OF MOMENTUM

The next incorrect equation is the unnumbered relation at the top
of page 13 in the thesis. There are two errors in this equation. First, a
term, l, should multiply the last term on the left side of the equality sign;
° 1
i.e. the last term should read = g% . The second error in this relation is

p
the omission of a term that will be named in reference to the next equation in



the thesis. Since this relation is not required in this proof and is not used
again in the thesis, no further reference will be made to this relation.

The next equation in the report is the first of the two conservation
of momentum equations. The two momentum equations are the radial and the
tangential components for the vector form of the conservation of momentum
equation. The equation for the radial component of the velocity, u, is
Equation 2.6 on page 13. This equation is in error as it appears in the
thesis. It is important to note that the corrected equation is valid for
both cylindrical and for symmetrical flow in spherical coordinaties. By
symmetrical flow in spherical coordinates is indicated a flow in which the
component in the direction of r sing Ap is zero. Equation 2.6 in the thesis
is in error by the omission of a term. The incorrect equation in the text,

Equation 2.6 on page 13, is

aGow) _ _ ap _ alrpud) _ algwu) (6)
Bt ar rar T

To be correct for cylindrical coordinates and for symmetrical flow in

spherical coordinates, it should be written

s RN —~a \.L‘..-.-.Z\ -~ f.;v.vn\. U2 (7N
a! Qu! = _ ap _ LA - QAT 4 e \71
at ?r ra3r ra® r

The proof of this relation is obtained by the use of the relation in Equation 3,
above. The correct equation for components is taken from a paper by William J.
Rae and Henry P. Kirchner4 that was presented at the Sixth Conference on

Hypervelocity Impact. The correct equation is
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., au,waw woo
3t T T 3§ T

O =

aP = o (8)
or

The proof of the equivalence of Equations 7 and 8 is given in the first
part of Appendix C.

The second, and last component of the momentum relation is Equation
2.7 on page 13. This relation is for the w component of the velocity which
is in the tangential direction, r A © ; i.e: in a plane that contains the
origin and the cylindfical radii, r. As was true for the other component
of the velocity, that is the u-component, the correct form of this relation
applies for both cylindrical coordinates and for spherical coordinates
provided there is no flow in the direction of r sin® A¢ for the spherical:
coordinates. The incorrect momentum equation for the velocity component, w,
is written

alpw) _ _ap _ d(zpuw) _ a(pw ) (9)
Jt oY) rar rag

To correct this equation for both cylindrical and spherical coordinates

with symmetrical flow, a term must be subtracted. The correct equation is

. , i
3(pw) _ _ap _ (rpuw) _ 3(pw) _ uw (10)
3t 36 T 38 r

The proof of this relation is easily obtained by the use of Equation 3, above.

4 -
The correct equation is given by Rae and Kirchmer and is

v, QW 4 2w . uw  13p _, (11)
3t 3T T3 T  p r3e



The proof of the equivalence of Equations 10 and 11 is given in Appendix C.

CONSERVATION OF ENERGY

There are two forms of the equation for the conservation of
energy in the thesis. The first relation is Equation 2.3 on page 10 of the
thesis. This equation is correct. It was first written as Equation 1 in
this report and was shown to be correct in Appendix A. This equation is

written

p 58 = -V.o1) D

where U is the vector velocity of flow, p is the pressure, p is the density
and, ¢, is the total energy. Observe that the total derivative is required
on the left side of this equation. The relation between the total energy

per unit mass, € , and the internal energy per unit mass, e, in cylindrical

coordinates with no flow in the direction, AZ, is

- 1 1
€ =e+ 7 U + 5 (12)

where u is the component of the velocity in the direction, Ar , and w is the
component of the velocity in the direction, rAf8. In Appendix A, it was shown
that Equation 1, above, can be converted to the vector form of the equation

for the conservation of energy that is given by Richtmyers, and which is given
as Equation c in Appendix A.

As more of the text of the thesis is considered, the conservation

of energy, Equation 28 on page 13, is wrong, as it is written. The error is



one of carelessness in copying. In this equation, the symbol, e, is used

without definition, at the equation. A definition of the symbol, e, is
inherent in Equation 2 of this report, which is Equation 2.4 on page 10 of

the thesis. By employing the symbol, e, in the equation of state, it must

be defined as the internal energy and it may be defined as the internal energy

per unit mass. The equation from the thesis is

3(pe) . _ a(mpw) _ apw) _ a(rpue) _ 3(pwe)
Jt T 38 3T o

This equation is wrong, as it is written. The correct equation should have
€ instead of e; i.e. the total energy instead of the internal energy. The
total energy is the sum of the internal energy and the kinetic energy as is

shown by Equation 12, above. The correct form of the preceding equation is

a(pe) - _ a(xpw) _ 3w) _ alrpue) _ a(pwe)
at 3r 3o T 3o (13)

The proof that this equation is correct and reduces to Rae's3 equation is
presented in the first part of Appendix D. The component form of Rae's

equation is

ae e e _P Qb P ‘.’.3.2>=
at+“ar+w§3 p2 3t T % T T 36 0 (14)

In the second part of Appendix D, it is shown that the vector form of the
equation for the conservation of energy from Richtmyer1 reduces to Rae's

component equation3 which is reproduced as Equation 14, above.



In the course of the preceding mathematical derivations, the extent
of the validity of Equation 13 became apparent. The equation is correct for
cylindrical coordinates when the flow is zero in the direction, AZ; There
may be flow in both of the directions Ar and rA8. The equation is also correct
for spherical flow when there is no flow in the tangential direction, r sin® Ag.

CORRECT FLOW EQUATIONS IN CYLINDRICAL AND
SPHERICAL COORDINATES

The preceding discussion is concerned with collecting and proving
the accuracy, or error, in the equations for hydrodynamic flow in Eulerian
form. With the direct approach to this problem, the discussion has scattered
the correct equations over several pages. The equations are collected below
so the slight deviations between the equations for cylindrical and spherical
flow are easily shown. The spherical equations are not specifically derived
in this report, since they are available from Rae.

A basic assumption is made that the flow of solids under the tre-
mendous forces from a hypervelocity impact may be calculated with the equations
for non-viscous, hydrodynamic flow. Two different configurations of the im-
pacting bodies are to be considered. One problem is the hypervelocity im-
pact of an infinitely long cylinder onto a semi-infinite slab with the axis
of the cylinder parallel to the surface of the slab. The second problem is
the hypervelocity impact of a sphere on a semi-infinite slab. The flow
equations should be in different coordinate systems for the most direct
solution of these two problems.

Eulerian Flow Equations in Cylindrical Coordinates
For the hypervelocity impact of an infinitely long cylinder,

cylindrical coordinates are used but there is no flow in the direction of the
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axis of the cylinder, which is taken to be in the z-direction with the
other coordinates as r and g. The Eulerian equations of flow are collected
from the preceding parts of this report.

Conservation of Mass

20 B_ GOk 4 2w, % L u”
3¢ T 9 a8 dr rae+rJ 0 @

Conservation of Momentum

2
qu . Qu , au 13 w _
at + Y3 + rad M par r 0 (8)
ﬁ.;. L+WL+13L+E=O (]_0)

at ar rad p T30 T

Conservation of Energy

2 4 o8 4 o . <§%+u§3+wm—>=o (14)

ot ar rad p ar rye

Two of the equations in Sodek's thesis deviate from the above
equations which are for an impacting cylinder, and not for a sphere as the
thesis states. The deviations are in the two equations for the conservation

2
uw

W . . .
of momentum. The term, - T s omitted from Equation 8 and the term +-;-

is omitted from Equation 10. The equations for the conservation of mass
and of energy are the same as in the thesis. The deviations of the thesis

equations from those for an impacting sphere are discussed below.
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Eulerian Flow Equations in Spherical Coordinates

For the hypervelocity impact of a sphere on a semi-infinite
slab, spherical coordinates are the most practical but the flow is entirely
radial so the variables are r and §. There is no tangential flow in the
direction of r sin® A¢. The Eulerian equations of flow are given by Rae
and have not been specifically proved in this report.

Conservation of Mass

a0 4 2P 4 o0 QU 4 AW _ v
at+uar+ rae+°_ar+rae+ +rcote] (15)

Conservation of Momentum, no change from cylindrical

2
ou L L lap _w_

s st =0 ®)
f- AN 1 . | A lap ,uw_, (10)

ot~ “ar T Yrag T prag T

Conservation of Energy, no change from cylindrical

o€ 4 .2 4 wL P__[ED_ B.Q+w5L =0 14

at © Car r20 (e
It is to be observed that there is a change in only the first equation from
the same flow equations in cylindrical coordinates. This means, however, that
three of the four equations for hydrodynamic flow in the thesis are not

correct for an impacting sphere. The momentum equations have the same error
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as for an impacting cylinder. The equations for the conservation of mass
. - u, w
requires the addition of two terms, T + T cot ©.

The flow equations are not, of course, the only factors that
affect the solution. The initial boundary conditions for the cylindrical
and spherical impact are quite different and have a major affect on the
solution. The boundary conditions are presented and discussed in the next
section. After these are presented, there is a short discussion of the

significance of the solution that is obtained in the thesis.

INITTIAL BOUNDARY CONDITIONS

In the thesis, the initial values and the initial boundary
conditions are mentioned in several places. The most extensive discussion
is on pages 39 to 42, inclusive. There is additional discussion and the
very pertinent Figure 8 on pages 51 to 53, inclusive. There are some other
indirect references in connection with the difference equations. The sketch
in Figure 8 does not have the correct proportions, but it does illustrate
pertinent features of the problem. The discussions in these two places in
the thesis are not entirely explicit, but only a very little additional
information is required from the author of the thesis in order to ascertain
the situation.

The position of the origin of the coordinate system must be
defined with respect to the point of impact. Refer to Figure 8 in the thesis
for the position of the coordinate system. The origin is taken to be at a
distance, 3R, above the plane of impact--this is not the proportions in
Figure 8. The radius of the impacting sphere is defined as R. The radius
of the coordinate system, r, is measured from the origin. The angle, e=45°,

(o]
is shown in Figure 8. Straight down in this figure corresponds to 8=90 .
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In the computer calculations, only the range from e=90o to 6=40 to 35o is
programmed for the computer. The computer is programmed to consider

meshes from e=909 to e=45°. If the disturbance from the impact reaches the
edge of the meshes at 6=450, the computer extends the meshes to e=40°, etc.
For cylindrical coordinates, the z-axis would be perpendicular to the paper.

For the specified coordinate system, the surface of the semi-

infinite slab is below the origin at the position

r sin® = 3R
(15)

where R is the radius of the impacting cylinder, or sphere. It is to be
observed that a little difference in the notation exists between the above
equation and Equation 3.12 on page 39 in the thesis, but the difference is
obvious.

The equation of the trace of the circumference of the sphere,
or cylinder, on a plane through the point of contact and which contains the
normal axis of the sphere, or cylinder, is given by equation 3.13 on page 40

of the thesis. The equation is

2 =z 2
b-a +R - 2bR sing =0

where a is the radius of the circle which has its center at (b,g). In the
nomenclature for the flow equations and for Equation 15, above, the required
substitutions are b = 2R, a = R and R = r. With these new variables, the

equation of the trace becomes

2 2 2
4R -~ R +r - 4Rr sinp =0

or

2 =0
rz - 4Rr sin® + 3R

(16)
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In the thesis, there is no further direct consideration of this equation.
Attention was centered on programming the boundary of the circle to move
into the semi-infinite solid without disintegrating, or feathering out
beyond the defining edge.

As the circle moves, the method of Rich6 was followed to
calculate the partial areas in each mesh which are occupied by matter and
the part of the mesh that is empty. The thickness of all meshes was taken
as the same. From these considerations and from discussions with the author
of the thesis, it is known that the impacting shape was taken to be a thin,
flat cylinder of constant thickness. This is the initial boundary condi-
tion for an infinitely long cylinder, and not for a sphere. The volume of

each mesh, as used in the thesis, is

Ar A6 1
a7

where the distance along the z-axis is taken as unity instead of Az.

For an impacting sphere, with the coordinates and the sphere
positioned as in Figure 8 on page 52 of the thesis, the volume of each
mesh is obtained by multiplying the surface area by the thickness,

r sing Agp. The volume of the mesh becomes

AT TAS rcsine

(18)
where Ap is taken equal to unity. In the difference equations, L should
be measured to the "center'" of the mesh. This correction is included
in the recalculation of the hypervelocity impact of a sphere, which is now
in progress.
To summarize these considerations on the boundary conditions that

were introduced into the difference equations and the computer are those for
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an infinitely long cylinder, impacting at hypervelocity on a semi-infinite
slab. The axis of the cylinder is parallel to the surface of the solid.
The initial boundary conditions are not acceptable for the impact

of a sphere. With the initial boundary conditions corresponding to an
infinitely long cylinder, and with two of the four flow equations correct
for cylindrical coordinates, the results in the thesis approximate more
closely to the impact of an infinitely long cylinder than to the impact

of a sphere. It is interesting to speculate on the magnitude of the error
in the solution for the impacting cylinder.

"CONSERVATIVE'" FORM OF EQUATIONS FOR CALCULATION
ON A DIGITAL COMPUTER

The flow equations, in the form in which Rae3 presents them, are
not in the best form for calculations with a digital computer. The equations
should be converted to the "conservative" form, speaking in computer termi=-
mology. The equations that were presented in Sodek's thesis are in the
“"conservative" form and the considerable exercises in vector algebra in
this report are required to convert them back to the simple form that is
familiar and which are given by Rae. Since the computer equations are always
written, if feasible, in "conservative" form, errors and small deviations
from the standard forms of these equations are only obvious after an exhaus-
tive calculation. This is the only excuse for missing the errors in the
thesis.

In the last section of this report, it was proposed to speculate
on the errors that probably resulted from the use of the incorrect equations.
Before proceeding with those speculations, it is desirable to clarify and
emphasis the computer programmer's interest in obtaining the equations in

the "conservative" form. The clarification proceeds rapidly and with little
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effort by reference to the specific example that follows.

Consider an erroneous equation which was introduced and is employed
in the thesis. The first equation for the conservation of momentum, which is
the incorrect Equation 6 in this report, is an excellent example. This
equation is, however, in the conservative form. The corrected form of this
equation is given in Equation 7 of this report, but this equation is not
in the "conservative" form. The explanation of the term, 'conservative", is
apparent when difference equations are formed from these two differential
equations. When considering Equation 6, every quantity is in differential
form and the difference equation can be stated in terms of specific values
of the variables which correspond to the start and to the end of a time
interval, At. This is in contrast to Equation 7, where it is not immediately
apparent as to which instant in the time interval, At, to employ to evaluate

2
the quantities w and r. If the term % , 1s of the same order of magnitude
as the other terms in the difference equation, and error of 10 per cent in
the choice of the correct instant in the time interval, At, could result in
a 10 per cent deviation in the result for each cycle that the solution is run
on the computer. When the problem is solved by repeated cycling, this
error may become so large that the apparent solution is not an acceptable
solution for the problem.

An obvious technique exists for overcoming the difficulty of not
having a "conservative' equation, but it requires several times the amount of
computer time that is required for the '"conservative' form of the equations.
The problem must be solved for several values of At and for the evaluation
of w and r at different instants of time within the time interval, At.

After enough work, it will be found that the solution can be made to converge
on a single solution. This will be the correct solution; but an analytical

proof, that it is the correct solution, is quite difficult.
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SPECULATION ON THE VALUE OF SOLUTIONS WITH THE ERRONEOUS
FLOW EQUATIONS

Since the thesis was completed before the errors in it were
discovered, the question arises as to the value of the solutions which are
presented in it. Do the results have significance for any actual problem?
The conclusion from the available evidence is that the solutions have some
value and this subject will now be discussed. The results in the thesis
probably deviate considerably from the impact of a sphere onto a semi-
infinite slab. 1In contrast, the general features of the solution, without
dependence on the quantitative values, are probably correct for the impact
of a cylinder of infinite length on a semi-infinite slab when the axis of
the cylinder is parallel to the face of the semi-infinite slab.

The results in the thesis are probably in considerable error for
the impact of a sphere on a semi-infinite slab. The greatest error probably
results from the initial boundary condition which assumes that the impacting
element is a thin, right-cylinder instead of a wedge. 1In addition to the
error in the initial condition, three of the four flow equations are in
error for this problem. These equations were discussed in a preceding
section of this report which was titled, "Correct Flow Equations in Cylin-
drical and Spherical Coordinates".

In contrast to the case for the sphere, the results in the thesis
do appear to approximate the solution for the impact of an infinitely long
cylinder onto a semi-infinite slab. The initial boundary conditions for the
solution in the thesis are the initial boundary conditions for the impact
of an infinitely long cylinder, with its axis parallel to the surface of the
semi-infinite slab. A disc with the shape of a thin, right-cylinder is

assumed to impact on the surface of the semi-infinite slab. The flow



18

equations for the conservation of mass and the conservation of energy are
correct. There is a term omitted from each of the two equations for the
conservation of momentum. The effect of the omission of these two terms
will be considered by reference to the equations of flow in the form that
Rae3 presents them.

Before discussing the differences between the integral of the
correct and the incorrect equations, it is important to emphasize that the
following comments must be considered as speculative. For calculations on
the computer, the differential equations must be converted into difference
equations. The integration proceeds with repeated additions of slight
variations of the difference equations, and any error in the difference
equation is added two to five thousand times. As a consequence, a very
small error in the difference equation may produce a very significant
deviation in the quantitative values in the results. With these consid-
erations in mind, the following arguments concern only speculations on the
general form of the results. The correct form of the two differential

equations for the conservation of momentum are:

2
u u u 13 _ w_
it Vet T 0

(8)
oL AR . + v 1 op_ W
ot Tt TVttt O

(11

These equations are the correct forms of the differential equations, and
are not the forms that were employed in the thesis. In the thesis, the
last term in each equation is omitted. The order of magnitude of these

last terms is now considered in respect to the order of magnitude of the
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other terms in the equationms.

An inspection of the curves in the thesis show the solutions
| for the direction and magnitude of the velocity. It is apparent that the
} velocity, w, must be zero for all values of & = 900. This value of 8
corresponds to the vertical direction on the plots which is the axis of
the impact. From considerations of symmetry, there can be no flow in the
horizontal direction across this vertical axis. Although w is zero, this
does not require g% to be zero. As a consequence, the corrective terms in

Equations 8 and 11 become zero on the vertical axis. This does not mean

that the solution is unchanged on this line. When the angle deviates from
the vertical by a small amount, the finite value of w quickly results in
=}

.9
an error. For Equation 8 at =85, r = 3.0R, t=0.40 x 10 seconds

and Vo, = 36 kilometers per second

14 18
e 10 135 0
3r p or
3 2 . 12
49 v
w5 - 10 = - 10

It must be emphasized that the sum of these terms adds to the value of g% .
o
For the other angles that are less than 85 , the order of magnitude of the

terms have the following approximate values for the same time and the same

initial velocity as above.

14 15
or p or
u 13 wa 13
w2 10 - - 10

a6

As time and the value of r increases, there is an angle in the region of
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450 at which u = 0. This region requires special consideration.

The relative values for Equation 11 are a little different.
For angles that are less than 309; the values of w are usually less than
those for u. When 8 = 850, r=3.0R, t=0.4x 10.9 seconds and V, = 36

kilometers per second, the terms in the momentum equation have the following

order of magnitude:

m o 13 l an- . 14
u T 10 o T30 10
12 13
w10 w__ 10
0 r

For smaller values of § , there is not much variation with the angle except
in the vicinity of the angle at which u = 0; i.e. when w is perpendicular
to r. This latter condition only holds late in the impact. For the

smaller angles, the order of magnitude of the quantities is

14 1 14
a X510 22 10
or p r3d
13 13
W uw
M. 10 ™ 10
raf
There is somc tendency for the magnitude of the terms to increase as the

flow approaches the surface; but the ratio appears little changed.

A few comments may assist to summarize and clarify the preceding
discussion. The solutions in the thesis approximates to the correct solu-
tion for the hypervelocity impact of an aluminum cylinder onto a semi-

infinite slab of aluminum with the axis of the cylinder parallel to the
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face of the slab. The initial boundary conditions and two of the four
flow equations are correct for this solution. There is, however, one
term that is omitted in the radial momentum equation and another omitted
term in the tangential momentum equation. The omitted term in the radial
momentum equation is of the order of one per cent of the other terms in
the differential equation. It is questionable if this term has a signif-
cant effect on the general features of the flow pattern. It certainly
affects the quantitative values in the flow pattern, but not by several
orders of magnitude. For the tangential momentum equation, the omitted
term amounts to roughly 10 per cent of the other terms. Except near the
surface, the tangential momentum is less than the radial momentum. Since
the tangential momentum, mw, is zero on the axis of impact, the general
features of the solution are probably correct on this axis. As the flow
is considered at distances that are farther away from the vertical axis,
there is probably a general increase in the error.

In conclusion, the general features of the impact that are

illustrated in the solutions are probably correct for the hypervelocity
impact on a semi-infinite slab of an infinitely long cylinder with the
axis of the cylinder parallel to the surface of the slab. There is
some error in the plotted results near the surface which arises from
the use of the incorrect flow equations. Although the general features
of the solution are probably correct, the quantitative values are cer+
tainly in error.

Added Note: It has just come to our attention that a paper on
oblique, hypervelocity impact was presented at the last Symposium on

Hypervelocity Impact. In this paper, Bjork et al7 employ the impact of a
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cylinder with its axis parallel to the surface of the slab, as an-

approximation to the impact of a sphere.
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APPENDIX A
Definition of Units of Energy

The proof of the equations in Sodek's thesis may be carried through
in several ways. Probably the easiest method is to show the equivalence of the
equations in Sodek's thesis with the vector equations for components that are
given by Rae. The three vector equations for flow are reproduced from page 192
in Richtmyer's book.1 The equation for conservation of métter (usually call-

ed the equation of continuity) is
(‘%t-+ﬁ.v>p--pv.ﬁ (2)

The equation for the conservation of momentum follows from one of Newton's

laws of motion and is

p-(§g+a.v)t=-vp (b)

The equation for the conservation of energy is
p(%{"'ﬁ-V)e”'PV-ﬁ (c)

In his book, Richtmyer gives credit for the preceding formulation of the
laws to Courant and Friedrich .2

During the discussion in these Appendices, it will be shown that
the preceding equations are equivalent to the equations for the separate

components that are given by Rae.3’ 4

The deviations between the equations
by Richtmyer and by Rae from the equations in Sodek's thesis will also be
shown.

In the text of this report, it is stated that Equation 1 is

correct. In order to show this, it will be necessary to use the results
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from equations that are derived from Equation b in these appendices. This will
be indicated when the equations are introduced and the form that is introduced
will be proven in another appendix. Sodek's equation, as reproduced by

Equation 1, states

o E= b (@

The term on the left is the total derivative. For cylindrical coordinates
and for spherical coordinates when there is no flow in the tangential di-

rection, TAg,

€=e + % u2 + % w? (e)

where e is the internal emergy, u is the component of the total velocity,

o

u, in the direction of Ar and w is the component of the total velocity in
the direction of rpAf. Substituting equation e into equation d and expanding

d 1 2 1 2 - -
pgcl e + > uAr + = 0 rAB - pV.u - u.{7p

or
de du dw - " ap &Py -
o+ p + pwim = - pV.u - (u_+w_ ) . + e)
at © PYdc dt r TA® T ,r TO8 gy
- - + _ . QP _ . aP
pV.u - u ar ~ ¥ 30 (£)

Consider the terms on the left hand side of Equation £ and expand the total
differentials term by term. By definition, the first term is

de

Pdc at + u.v>

and the second term becomes
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pu, _ — =pu 13_ + (u .Y)u ]
Ar dt AT Ar jat AT AT
ay av au_
= pu + (u,_+tw ). + : ]
at Ar Y- ) ar AT 3t A9
a_+puza}1_+p au_
Bt 23 38
The third term becomes
P¥ra8 dt ras [ ra + () erB.}
aw Qv Qv
=pw[ +(u_+w ). + e>]
at T TAg' ar AT 39 A

= ow g% + pwu’§¥ + pwz Ega
The terms on the right in equation f must also be changed in form

by substitution. The terms for change are included in the second and the

third terms on the right. Their values are substituted from the u-component

and the w-component for the momentum, which have not yet been derived in this

report. For the present, their values are obtained from Equation 2 and

Equation 3 in the paper by Rae.3 The value of the derivative in the second term

on the right is given by Rae to be

ap.=_al_1_a2_a_n_
ar pat puar pv E #-1°) + T

and the value of the term in the third term on the right is given by Rae to be

aP_ - v _

= - avw _ avw  _puw
= p pu pw

at »T rae T

equation f is now rewritten with the expanded terms that have been

collected between equation f and this paragraph.
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p <:§E + ﬁ.§i> e + pu g% + pu2 a g puw au

3T r3d

2 2 uw2

+ v pwls + puwbﬂ + ow Q¥ | Quw
T at T 2.1 r

= —p\T.i + pull 4 o AY u
pV/.u + puat + pu 3T + puw%sg

w W 2 pw
toge t eIt v 55

After the common terms are canceled, the equation simplifies to

p<§;+t.v>e = - py.i

which is equation c that was written near the start of this appendix and is

the equation that was taken from Richtmyer. This vector relation is correct
for cylindrical coordinates and for spherical coordinates when there is no flow
in the direction, rAg. The conversion of this relation to the equation in
cylindrical coordinates that appears in Rae's paper and the equation that
appears in Sodek's thesis is postponed until consideration of the conservation

of energy.
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APPENDIX B
Conservation of Mass

In this appendix, it is desired to show that the vector equation
from Richtmyer, equation a in Appendix A, is the equivalent of Equation 3
in the text. After this is shown, it will be found that both are equiva-
lent to the equation for the conservation of mass in the component form
X . 3
that is given by Rae.

As the first step in the proof, expand Equation 3 from the text

p—-L - 1o R L ST, L A T I
at Par Yar r Prag ~ . 1:) (2)

Collect in the form that is given by Rae3

QQ ull + ‘,B.Q_ au  aw _ u
5t Yar rae+p ar+r39+r =0 (b)

This equation is for cylindrical coordinates and corresponds to Rae's
equation for cylindrical coordinates.

This same equation may now be found by expanding the vector
equation by Richtmyer that is given as Equation a in Appendix A. Equation

a is

L

When this equation is expandcd and the vector product is expanded into

cylindrical coordinates according to the relation given on page 25 of Jones5

%gf(uArer ) =t

Y ar ,, T8 .,

= - [1&_1_). ]:-B_‘l.ol.l.pm_
rae PRar = 30
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Complete the product on the left and transpose terms

oAy W uN
g-%-!-ug%-{-w%%e- +p<ar+ rae+r> 0 (c)

This equation and E quation b in this appendix are the same.
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APPENDIX C
Conservation of Momentum

The two components of the momentum equation are considered
separately. 1In the very first part of the following series of proofs,
the component of the momentum in the direction of Ar is compared with
the component that is given by Rae and Kirchner4 in the Proceedings of
the Sixth Conference on Hypervelocity Impact. This is a proof that Equa-
tions 7 and 8 in the text are equivalent and is a rather trivial exercise.
In the second section of the first part, the component of the momentum in
the direction of rAf is compared with the component that is given by Rae
and Kirchner.4 This part is proof that Equations 10 and 11 in the text
are equivalent.

As in the preceding appendices, it is desirable to show that
the vector equation for the conservation of momentum from Richtmyerl,
Equation b in Appendix A, is the equivalent of the two component equations
for the conservation of momentum that are given by Rae.3 This will be
shown in the second part of this appendix. In defense of Sodek, it merits
consideration that he had, and he used Richtmyer's equations but he did
not have the Rae equations for the conservation of momentum in component
form.

As the first proof in this appendix, the proof of the equiva-
lence of Equations 7 and 8 in the text proceeds in the following manner.
Start with Equation 6 and perform the partial differentiations that are

indicated
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ot ?r rar 3o
2
- TR SR L S - 1 NP SN L SN | Y- L SR - A
P ac tu St 3T T Yo 2puar YUrae T "Yr3e T PUrag (2)

In the second term on the left side of the equality, substitute for %%
from the incorrect Equation 3 in the text, Recall that Equation 3 is
incorrect for cylindrical coordinates because one term is omitted. This

equation is substituted in order to find the errors in the equations that

Sodek used.

- EN -1 S | . [_ alrow) _ 2(gw)
3t 7 Uit Pae ¥ 3T r3e

au pu aie_l -1 -
P3t +u [ Prag ~ ¥ r3® (v)

Write the expanded value from equation b into equation a

Qu _pgu _ . Qdu 293 QW _ WuQp
P at T upar v ar purae r 3%

2
=2P _pu _ Za@p _ au _ L, o aw o aw
u 2pu 3t wu 30 pw 38 pu 36
Cancel the common terms from both sides of the equality sign and collect

the remaining terms on the left side of the equality sign

dr dr 38 (c)

By comparing equation ¢ with Equation 8, it is apparent that one term,

2
v

r

» is omitted from equation c. The form of the omitted term is most
important, and this term will be considered again in these comments.

Second Component of the Momentum
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The proof of the equivalence of Equations 10 and 11 proceeds in
the following manner. Start with Equation 9 and perform the partial differ-

entiations that are indicated

2w _ _ap_ _ afrpuw) _ a&ezfl

at rag 3T a6
aw - DR_ _QU¥ _ 3D QW _ u _ o, ¥ 2 3p
P3c ¥ "gﬁ 38 T ar ~ PYr pwg? 20vr3e T ¥ rae (a)

In the second term on the left side of the equality, substitute for'%%

from the incorrect Equation 3. This incorrect equation is used for the

same reason as stated under the proof for the other component.

a_ a_ - pdR _ 8 ow
T [ Y3 T Par T Prag T Vrae ]

= Q¥ _puw _ 90 QU ‘ﬁl__
Pyt T YWar T PY3r T Yr3e rae
2
- 9P _puw _ B AW _ du _, Aw _ W 30
ree - or C War T PYr T M3 T 2PVig Tt 39 (b)

Cancel the common terms from both sides of the equality sign and collect

the remaining terms on the left side of the equality sign

¥ L3P 4 W, W =9

Pat T rag P T "r3e

Divide through by p

b_.,._QL B.._+w3.‘.’.=0
dt  p r3p dr 21 ()
By comparing Equation ¢ with Equation 11, it is apparent that one term,

u
+ :? , is omitted from Equation c.

Derivation of Component Equations from the Vector Equation

The preceding two sections in this appendix consider equations
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for the two components of the vector equation for the conservation of
of momentum. In cylindrical coordinates with no flow along the x-direction,
there are only two components of the vector equation for the conservation of
momentum. It will not be shown, but the two components for the cylindrical
coordinates are also the only two coordinates that are required for spherical
coordinates when there is no flow in the tangential direction, I' sin 6 A @ .
in the preceding proofs, it was found that the equation in the thesis omit
one term from each of the two component equations, when these equations are
compared with the component equations from Rae.3 In the following proof,
the vector equation for the conservation of momentum is taken from Richtmyer1
and the two component equations from Rae are found.

The vector equation for the conservation of momentum is given

by equation b in Appendix A. This equation is written
pC%E+E.V>ﬁ=‘Vp (a)
There is a short cut in the notation that is employed in this equation and
in the following proof. In the above equation, U is the velocity vector.
In cylindrical coordinates with no flow along the z-axis, the components of
4 are uAr in the direction of Ar and ere is the direction of rp8. After
these terms are introduced with the above subscripts, the following practice
is to drop the subscripts and to remember the directions of u and w.

To reduce the form in equation a, introduce the vector relation

V) a=zVea-xVxd (b)

Substitute this form in equation a and transpose to obtain

G 1 1 ~— F's .-l-_
g; + ;-V7p LA VAR EE R UVxu=0
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Substitute the components of u for this vector and the relation becomes

ou v 1 ; 1 2
_A.I; + -—EA.Q + = 3.2‘ aP_ ( )
at  at p arlAr p a8l o 2\ 3T AT rae VAN A A8 |

-uxyYxu1=0

Partially collecting the terms, this becomes

Au W, P ..
pil:-' 3t 3t prae ( > uxVVxu=0 (o)

e

In cylindrical coordinates, the value of = x U is given by Equation 60 on page

25 of Jone's text.5

L avAz i aere ! . 3u r v z \
Vxu —Ar Az
rae 3z SAr 3z ?r

. rAe

+<l a(rere) Wy )
r ar rab Az (d)

Since there is no flow along the z-axis, qu=0. In addition, there is no

change in the velocity along the z-axis so the following relations hold

aere = auAr = 0

oz dz

These values are now substituted in Equation d in order to obtain the
following reduced form

G=( ™ ¥ o oau
Vxu dr * T 3o Az

To complete the evaluation of & x {/x U, insert the value of i and of

¢ x 4 in a matrix
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ix xua=|ar TAS Az
u w 0

aw , w - gu

0 0 3t T 30

- (= ) rae)’m__ ( T e ) TA8 (e)

The value in Equation e must now be substituted into Equation c. In order to
obtain the change in velocity in the Ar direction, include only those terms

from Equations c and e.

2
au 1 3p, du, aw  aw _w . au_ _ .
?3t  p ar Yar ar ar T

After canceling terms, this becomes

2
du , lap a_ B AP | S,
at * p AT ar b + rah 0

which is Equation 2 in Rae's pape-r.4 If the change of velocity in the rAg

direction is desired, collect those terms from equations e and c. The velocity

in the rA8 direction is

aw . lap , ou  du W . wu _ pu,
st T orae T Uras T Vree F%r T r " Vras 0

After canceling terms, this equation becomes

aw . lop wé__.+ b_ + ¥ -9
3t p T8 r3e

which is Equation 3 in Rae's paper.
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APPENDIX D
Conservation of Energy

In the following discussion, two different proofs are presented.
The first proof will consider the equation in the thesis for the conserva-
tion of energy. As indicated in this report, this equation is correct for
cylindrical coordinates provided the total energy, €, is used instead of the
internal energy, e. After this correction, the equation in the thesis is
correct for both cylindrical coordinates with zero flow in the Az direction
and for spherical coordinates with zero flow in the r singpg directdonm.
After the preceding, straightforward, but very lengthy proof, the second
part of this appendix will show that Rae's component equation may be obtained

from Richtmyer's vector equation for the conservation of energy.

Expansion of Equation from Thesis to Obtain Rae's Component Equation

Replace the internal energy, e, in Equation 14 in the text with
the notation for the total energy, ¢. The preceding equation is incorrect
in the thesis with the internal energy, e, instead of the total energy, e¢.
After this substitution, it will be shown that the corrected equation reduces

to Rae's form. The equation that is to be proven is

2ee) . aCe) Al . Aguo)  2Ggme) @

rar rae 38
Partially expand both sides of this equation
¢ ;¢ . _alpw _pu_ AV _ ap
Pat " " at 3T r  “rag  rag

_eue  aue) 3 d¢ _  IW__ dp
r  Par Year T P¥rag T Peras T Yerae
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Complete the expansion

3¢ 4 B0 . _ U _ 3P _pou_ AW
pat at .} 4 dr T a8

.wQP_ _pue _ Be Qu D 06 _ AW _ . 20
38~ r  PY%r T PSr T Ye3r T P¥rap T Perae T Verae (®)

Replace the total energy, ¢, by its value from Equation 13 in the text.

The relation is
2 2
L 2 (c)

-e +=u” +
= e 2\1 2W

The resulting equation becomes very long but everything is straight-

forward
pg?'i-pu +pr %u2§%+%w2§%
AR Pr"P?a—e e T e
- pu2 g% - uwa— e—— - % pu2 g% % pw 2 g;
-%%‘ﬁ-pe;-pw%-pwzs‘ge—-peg—e
-%puz%-%pwzgya—e‘-we%-%wuzegg-%w3%%—e- @

On the left hand side of the preceding equation, substitute for the value

u aw . .
of-g- and = from Rae's form of the conservation of momentum equations.

ot

In the text of this report, Equations 8 and 11 are the required equations.

With this substitution, the left side of the preceding equation becomes

2
B_ 20 1 220, 1 2 30 _ [52 E-L S R N .
T2 36t 2% a0 TP | Yar T ¥rae T r T poar

- F- LA\ B lap e L 0,1 230 1 .23
P {“ tvme T tomel TP TS T2 T2V e

2" 2
Wl 4 oUW AP L v 2 3w guw

- pu’ ar Pi¥r3e ~ t dar ~ Pr rag r  rae (e)
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Remove the terms that cancel between the right hand of the equality sign in
Equation d and the right hand side of Equation e, which is directly above.

Divide the reduced equation by p and rearrange the terms

2o, 2o e R (2, 20, 28 ) - _§<§n+m rag)

at Br a8 at or or
av L v - @9_4, > L2 (2w, aw
ar  r3b ar rad 2 ¢ dr  rag T

‘%LC ar raB) 3 2(53_ rae > (£)

The equation for the conservation of mass in cylindrical coordinates is

Equation 4 in the text. This equation is

B4 304 A0y (R L uY
ot or r3e or * 3l * :> 0

Compare this equation with the pairs of terms on the right hand side of

the equality sign in Equation f and that equation reduces to the following

goe | o8& 4 QQ o0 ¢ w22\ =
at ~ Tar rae USr T Yrae 0 (8)

This corresponds to the component equation for the conservation of energy
. . 3
that is given by Rae.

The preceding equation was derived in cylindrical coordinates,
and is the same equation that is given by Rae for spherical coordinates.
This is well-known, but it is decirable to emphasize that the equation is
the same in both spherical and cylindrical coordinates of the type that

are considered here.

Obtaining Rae's Component Equation from Richtmyer's Vector Equation

As for all other conservation equations, it is desirable to
show that the component equation from Rae's papers come directly from
Richtmyer's vector equation. Richtmyer's vector equation for the conservation

of energy is
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S .3 = - e
(G -wD)er 10
Expand the term on the left

p [ g? + (uAr + erG) . <:g;’Ar + & 58 a6 :ﬂ =-p - L

Perform the indicated operations and the equation becomes

L-{-pu wL:-Pv,ﬁ (b)

Pt a8
Now expand the term on the right, recalling that the divergence is in

cylindrical coordinates with no spread in the AZ direction. Use the

5
definition for divergence in cylindrical coordinates that is given by Jones.

3e a - . 1 Ar) Mrpb
Pac * °uar P¥ra0 P { ot 38
= o 70} ]
36 (c)

Refer to the equation for the conservation of mass that is given in Equation

4 of the text. The equation is

9P 4 R0 4 B0 .1 TP T
3t ar r3o ar rae + r) 0 (@

The term in the brackets on the right side of equation c is the same as the
term in the brackets in Equation d. Substitute for the term in the brackets

in Equation c.

Ae Je
=€ 4+ + =
P“ar pat rae ( ar rab ) 0

Divide this equation by p , and it becomes Rae's equation for the conserva-

tion of energy

ge | e . ge 80 4 420 4 22 )=
3t~ or 38 p at * far 1-‘39) 0




